
48 The Delphi Magazine Issue 67

What’s The Difference
This month we look at the
longest common subsequence

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Back at TurboPower HQ, we
have a set of bookcases hold-

ing programming and computer
magazines. Every now and then we
have to cull them a little, otherwise
we’d be swamped in glossy paper.
This has been made easier to do
ever since magazines put all their
back issues on CD: the amount of
room taken by a CD is a couple
of magnitudes smaller than that
taken by five years’ worth of
magazines.

The last time this happened, a
couple of years back, I had a fun
half-hour flipping through back
issues of Byte and Dr Dobbs, and so
on. There were some even older
magazines, long dead, whose titles
have been forgotten, and a box of
clippings and photocopies of old
articles. This box certainly was
fascinating, illuminating the his-
tory of TurboPower through the
choice that someone had made in
selecting them. There were articles
on protected mode DOS, writing
assembly language TSRs (Termi-
nate and Stay Resident programs
for you young ‘uns), and writing
directly to the CGA video memory
buffer without causing snow on the
screen. All interesting stuff for a
programmer like me who remem-
bers using an original PC when a
10Mb hard drive was a luxury.

Anyway, also in this box were a
series of algorithm articles. Being
an inveterate hoarder of these
things I kept some of them, think-
ing that they might trigger an
article some day. One of them has
been niggling at me ever since I
read it: What’s the Diff? A File Com-
parator for CP/M Plus, by D E
Cortesi, published in Dr Dobbs
Journal in August 1984. It seemed
very arcane to me when I read it.
Also, it didn’t help that the article
said things like: ‘Pascal is not the
best language for this [Diff] pro-
gram. It really needs more freedom
to allocate storage.’ Well, ptouii to

that! The source code supplied by
the author was Standard Pascal to
the core, and I put a project onto
the back burner to research it
more one day.

What the article was trying to
show, and what I wanted to do, was
write a routine that would take two
copies of the same text file, one
being a later edition of the other,
presumably containing several dif-
ferences, and work out what
changes were made in going from
the older file to the newer. Unix has
a program to do this called DIFF,
which is the granddaddy of all file
difference programs. I use one
from the Windows SDK called
WinDiff. This displays the two ver-
sions of the file as vertical bars side
by side with lines going from the
left bar to the right bar recording
the changes. The red lines are dele-
tions, the yellow ones insertions.
You can also see the text lines as
well in the same manner (text lines
in red are deleted, text lines in
yellow are inserted). This tool is
invaluable for me; for example, I
use it to determine changes in the
VCL source code between one ver-
sion of Delphi and the next. Visual
SourceSafe (the version control
system we use) also has a tool like
this for showing the differences
between one version of a source
file and another: this has saved my
bacon many a time.

In the meantime, I did do a little
research on file comparison
algorithms, but didn’t turn up
anything interesting. It didn’t help
that I didn’t know what I was look-
ing for: I had no idea what the
algorithm was called that did what
I wanted. Also, I felt a little foolish
searching for ‘file comparator’,
something that sounded like it had
been used in a 1950s science fiction
B-movie. So, I put it aside: some-
times I’ve found that if I’m not
looking for something it turns up
eventually.

And so it has. A couple of weeks
ago I was idly flipping through an
algorithms book, looking for some-
thing else, when a diagram in the
text caught my eye: it looked a little
like the WinDiff display but shown
horizontally rather than vertically.
The topic was how to work out the
longest common subsequence.
Bingo! I had the name. And then of
course I found it in lots of books
and, after a bit more research,
thought it would make a good
algorithm to discuss in this
column.

Initial Thoughts
So how’s it done? Before I reveal
all, let’s think about the problem.
We have two text files, let’s call
them the source file and the desti-
nation file. We assume that they
represent two different versions of
the same text, with the destination
file being a later version of the
source file. We want to be able to
show the lines that were changed
going from one to the other. By
changed, what do I mean? Well,
boiled down to its essence, all
changes to a text file can be viewed
as deletions and insertions. In other
words, if someone changed a line
by adding a word to it, we won’t
track that as an alteration of a
single line, but as a deletion of the
original line, followed by an inser-
tion of the new one with the same
text and the extra word. That way,
we don’t get drawn into semantic
difficulties trying to decide when a
line is merely changed a little
versus one that was completely
rewritten.

So, there we are with two files.
Let’s make it easier for ourselves

March 2001 The Delphi Magazine 49

and assume that we’ve read them
into their own string lists. Talking
about array accesses is easier than
talking about how to seek to a line
and read it in a text file. Without the
benefit of hindsight, I suppose I’d
be trying out something like this to
mark the changes. Read the two
files in parallel, comparing one line
from the source with one from the
destination, until we reach the first
difference. This difference may be
due to two things: the source line
was deleted or the destination line
was inserted. Let’s assume the
second.

I’d make a note of where we were
in the destination file, and then
continue reading through the des-
tination file until I ran out of lines or
I found a line equal to the source
line. If I ran out of lines I’d assume
that the source line had been
deleted, and seek through the
source file until I found a line equal
to the destination line. And so on,
and so forth.

I hope you can see the complex-
ity of this first-stab-at-it algorithm.
For every line in the source or des-
tination file, you could find your-
self reading through the rest of the
opposite file. And there’s no guar-
antee you’d get anything sensible
out at the end. Consider, for exam-
ple, the number of lines in a Delphi
source file that just consist of the
text ‘begin’ or ‘end;’ starting at the
first character. You could find
yourself jumping over whole
swathes of lines to match up with
the wrong ‘end;’. No, all in all, our
‘let’s take a stab at this’ algorithm
isn’t worth bothering with.

Strings Are Easier
Now we’ve exhausted our initial
take on inventing an algorithm,
we’ll take a look at the longest
common subsequence algorithm.
For our initial exposition, we shall
assume that we are trying to find
the differences between two
strings. Then, having seen how it
works for strings, we’ll extend it to
files.

I’m sure we’ve all played those
children’s word puzzles where you
change one word into another by
altering a single letter at a time. All
the intermediary steps should be

words as well. So, to take a simple
example, to change CAT into DOG,
we might take the following steps:
CAT, COT, COG, DOG. Changing
WORK into PLAY is much more dif-
ficult; after about 10 minutes I
came up with WORK, WORD,
WOAD, ROAD, READ, REAR, PEAR,
PEAN, PLAN, and PLAY.

Anyway, these word games were
merely deleting a letter and insert-
ing a new one at each step. If we
didn’t have the limitations
imposed by the rules of the puzzle,
we could certainly transform any
word into another by deleting all
the old characters and inserting all
the new ones. That’s the sledge-
hammer approach, but we’d like to
be a little more subtle.

Suppose our goal were to find
the smallest number of edits
needed to convert one word to
another. Let’s take, as example,
changing BEGIN to FINISH. Looking
at this you can see that we should
delete B, E, G, and then insert F
before what’s left, and I, S, H after-
wards. So how do we implement
this as an algorithm, without
resorting to the ‘it’s easy’ answer?

One way is to look at the subse-
quences of each word and see if we
can’t get two subsequences to
match up. A subsequence of a string
is the string less one or more char-
acters. The remaining characters
should not be rearranged. For
example, the four-letter subse-
quences of BEGIN are EGIN, BGIN,
BEIN, BEGN, and BEGI. As you can
see, you form them by dropping
each character in turn. The
three-letter subsequences are
BEG, BEI, BEN, BGI, BGN, BIN, EGI,
EGN, EIN, and GIN. There are 10
two-letter subsequences and 5
single letter ones. So for a five
letter word there are a total of 30
possible subsequences and, in fact
it can be shown that for an n letter
sequence the number of subse-
quences is about 2n. Hold that
thought.

The brute-force algorithm, if I
may call it that, is to look at the two
words BEGIN and FINISH and enu-
merate their 5-letter subsequences
to see if any match. No, so do the
same for the 4-letter subsequences
of each word. Again, no, proceed to

the 3-letter subsequences. Yet
another no, and we move on to the
2-letter subsequences. Bingo!
There’s IN. From that we can work
out what to delete and what to
insert.

Now for small words, like our
example, this process isn’t too
bad. But imagine that we’re look-
ing at a 100-letter ‘word’. This is
where the thought comes in that I
asked you to hold. The brute-force
algorithm is exponential. For even
medium-sized data sets, the algo-
rithm’s search space grows alarm-
ingly fast. And with the growth in
the search space comes a dramatic
increase in the time taken to find
the solution. To drive home the
point: suppose we could generate
one billion subsequences per
second (that is, 230, or one
subsequence per cycle on a one
gigahertz PC). A year is about 225

seconds, so, to generate the entire
set of subsequences for a 100-
letter word would take 245 years; a
number with 14 digits. And remem-
ber here that the 100-letter word is
merely a simplification of what we
want to do: find differences for a
600-line source file, for example.

Thanks, but no thanks; I’ve got
better things to do.

The subsequence idea does
have its merits, though, we just
need to approach it from a differ-
ent angle. Instead of enumerating
all of the subsequences in the two
words and comparing, let’s see if
we can’t do it in a stepwise
progression.

Longest
Common Subsequence
Let’s suppose we have worked out
a longest common subsequence
for two words (we’ll abbreviate
longest common subsequence to
LCS from now on). We could then
draw lines between the letters in
the LCS from the first word to the
corresponding ones in the second
word. These lines would not cross.
(Why? Because a subsequence is
defined so that no rearrangement
of the letters is allowed, therefore
the letters in the LCS would appear
in the same order in both words.)
Figure 1 shows the LCS for the
words banana and abracadabra

50 The Delphi Magazine Issue 67

(that is, b, a, a, a) with lines drawn
to show the equivalent subse-
quence letters. Notice that there
are several possible longest
common subsequences for this
word pair: the figure just shows the
first (the one that appears closest
to the left).

Let’s assume that we have
worked out, one way or another, an
LCS between the two words. The
length of this subsequence is x,
say. Take a look at the final letters
for the two words. If they are the
same letter then this must appear
as the final letter in the LCS, and
there would be a linking line
between them. (If it doesn’t appear
as the final letter of the subse-
quence, then we could add it,
making the LCS one letter longer,
contradicting our assumption
about having the longest one in the
first place.) Remove this final letter
from the two words and also from
the subsequence. This shortened
subsequence of length x-1 is an
LCS of the two abbreviated words.
(If it were not, then there would be
a common subsequence of x or
larger for the two abbreviated
words. Adding in the final letters
would increase the length of this
new common subsequence by one,
so that there would be a common
subsequence between the com-
plete words of x+1 letters or
longer. This now contradicts our
assumption that we had an LCS.)

Suppose now that the final letter
in the LCS were not the same as the
final letter of the first word. This
would mean that the LCS between
the two complete words was also
the LCS between the first word less
its final letter and the second word
(if it were not, we could add back
the final letter of the first word and
find a longer LCS for the two
words). The same argument
applies to the case where the final
letter of the second word was not

the same as the final letter in the
LCS.

All very well, but what does this
show? A longest common
subsequence contains within it a
longest common subsequence of
the truncated parts of the two
words. To find an LCS of X and Y,
we break the problem down into
smaller problems. If the final char-
acter of X and Y were the same, we
would have to find the LCS of X and
Y minus their final letters, and then
add in this common letter. If not,
we would have to find out the LCS
of X minus its final letter and Y, and
that of X and Y minus its final letter,
and choose the longer of the two.
This almost seems too good to be
true: a simple recursive algorithm.
Yippee!

Aside On Fibonacci
Before we put fingers to keyboard,
let me add a word of caution by
bringing up a calculation and what
seems to be a simple recursive
solution to it. To calculate the nth
Fibonacci number, we could use its
definition: it is equal to the sum of
the two previous Fibonacci num-
bers. Given that the first and
second Fibonacci numbers are
both equal to 1, we could write the
recursive routine in Listing 1 to cal-
culate the nth Fibonacci number.
We would get the usual series: 1, 1,
2, 3, 5, 8, 13, 21, etc.

But consider what is happening
under the hood. Let’s calculate the
5th Fibonacci number. To do that,

we need to calculate the 3rd and 4th

ones. To calculate the 3rd Fibonacci
number we would have to calcu-
late the 1st and the 2nd. The 1st, by
definition is 1, and the 2nd is also
one. So the 3rd is 2. To calculate the
4th, we have to calculate the 2nd and
the 3rd. The 2nd is 1 by definition.
The 3rd is the sum of the 1st and the
2nd. The 1st is 1 and so is the 2nd, and
so the 3rd Fibonacci number is 2.
That, in turn, makes the 4th equal to
3. And finally we can calculate the
5th to be 5. In doing this recursive
calculation we worked out the
value of F1 twice, F2 three times, F3
twice, and F4 once. Nasty. Of
course, this simple example shows
that sometimes recursive solu-
tions are not always the best,
despite the fact that they seem to
fit rather well.

The problem with the recursive
solution to the Fibonacci calcula-
tion is that there are two recursive
calls inside the routine. These
recursive calls will make their own
recursive calls and, lo and behold,
you end up calculating the same
values over and over again. The
same problem occurs with our
recursive solution to calculating
the LCS: we can (and will) end up
calculating the same LCS over and
over again: a sheer waste of effort
and time.

What can we do? The recursive
solution certainly has its merits.
Go back to the Fibonacci case. If we
wanted to use the recursive
method, what could we do to
speed things up? One answer
would be to create an array to con-
tain the Fibonacci numbers we’ve
calculated so far. Set all elements

➤ Listing 1: The slow recursive
Fibonacci routine.

function SlowFibonacci(N : integer) : integer;
begin
if (N <= 2) then
Result := 1

else
Result := SlowFibonacci(N-2) + SlowFibonacci(N-1);

end;

b a n a n a

a b r a c a d a b r a

➤ Figure 1

52 The Delphi Magazine Issue 67

of the array to -1 (to signify
‘uncalculated’) except for the first
two, which are both set to 1. Now
write the Fibonacci routine to look
in the array for the answer. If the
answer is not there, it makes the
recursive calls to calculate the
answer. Once a call has calculated
the answer, it fills the relevant ele-
ment of the array. As you can imag-
ine, you would be reducing the
number of recursive calls quite
dramatically by using this simple
cache. Listing 2 shows this more
efficient recursive routine. (As an
aside, this is an example of making
calculations faster at the expense
of extra memory.) To show you the
effect of this cache, I ran both ver-
sions of the program (the recursive
version without the cache and the
one with it) to calculate the 40th

Fibonacci number. The version
with caching was virtually instan-
taneous; the version without took
over 25 seconds.

Calculating The LCS
Back to the algorithm for calculat-
ing the LCS. The description I gave
earlier was accurate but verbose.
Let’s reduce it to its basics. First,
we assume that the X string has n
characters and the Y string has m.
We shall write Xi to mean the string
formed from the first i characters
of X. i can also take the value zero
to mean the empty string (this con-
vention will make things easier to
understand in a moment). Xn is
then the whole string. Using this
nomenclature, the algorithm
reduces to this: if the last two char-
acters of Xn and Ym are the same,
the longest common subsequence
is equal to the LCS of Xn-1 and Ym-1

plus this last character. If they are
not the same, the LCS is equal to
the longer of the LCS of Xn-1 and Ym

and the LCS of Xn and Ym-1. To calcu-
late these ‘smaller’ LCSs we of
course recursively call the same
routine.

You saw that it is possible to
speed up a recursive algorithm by
using a cache. Unlike the Fibonacci
example with its linear array, the
LCS algorithm will require us to
create and fill a matrix. As a first
thought, each element of the
matrix would be a string showing

the LCS for that particular case.
However, if you think about it,
that’s not too helpful. We would
like to know the index of the match-
ing characters, not the matching
characters themselves, for then we
could work out the sequence of
deletions and insertions to get
from the first string to the second.
Hence a better idea would be to
store a string of character indexes
at each element, each index defin-
ing a matching character in the
LCS. The problem with that idea,
though, is that there would have to
be two strings of indexes, one for X
and one for Y.

Even that is way overkill: a better
approach would be to store
enough information at each ele-
ment of the matrix to enable us to
rebuild the LCS at will. When we
build the matrix we would have to
store the length of the LCS so far
(for without at least that piece of
information, it would be hard
indeed to work out the longest
common subsequence!). The other
information we would need to
store would be a pointer to the pre-
vious element that was used to
build the LCS for this element. That
way we could work our way back
from the final cell to the beginning
(and, if we used a recursive routine
to walk the matrix, we could easily
work out the LCS).

We’re getting ahead of ourselves
here. Before we can discuss walk-
ing the LCS matrix, we have to
build one. For now, each element of
the matrix will store two pieces of
information: the length of the LCS
at that point and the position of the
previous matrix element that
forms the prequel for this LCS.
There are only three possible cells

for this latter value: the one just
above (north), the one to the left
(west), and the one on the upper
left diagonal (northwest), so we
might as well use an enumerated
type for this.

Let’s calculate the LCS by hand
for the BEGIN/FINISH case. We’ll
have a 6x7 matrix (we take into
account empty substrings, so we
should start indexing at 0). Rather
than fill in the matrix recursively
(it’s hard for us to keep all those
recursive calls straight), we’ll cal-
culate all the cells iteratively from
the top left all the way down to the
bottom right, going from left to
right along each row for every row.
The first row and column are easy:
all zeroes. Why? Because the
longest common subsequence
between an empty string and any
other string is zero, that’s why.
From this we can start working out
the LCS for cell (1,1), or the two
strings B and F. The two final char-
acters of these one-character
strings are not equal, therefore the
length of the LCS is the maximum
of the previous cells to the north
and west. This is zero, so the value
of the cell is zero. Cell (1,2) is for
the strings B and FI. Again, zero.
Cell (2,1) is for BE and F: the LCS
length is zero again. Continuing
like this we can fill in all the 42 cells
in the matrix. Notice the cells for
the matching characters: this is
where the LCS length gets greater.
Table 1 shows the answer.

Writing this manual process in
code is not too bad. For a start, I
decided early on to make the
matrix a class. Internal to this

procedure PrepareFibCache;
var
i : integer;

begin
FibCache := TList.Create;
FibCache.Count := 1001;
FibCache[1] := pointer(1);
FibCache[2] := pointer(1);
for i := 3 to 1000 do
FibCache[i] := pointer(-1);

end;
function FastFibonacci(N : integer) : integer;
begin
Result := integer(FibCache[N]);
if (Result = -1) then begin
Result := FastFibonacci(N-2) + FastFibonacci(N-1);
FibCache[N] := pointer(Result);

end;
end;

➤ Listing 2: The faster recursive
Fibonacci with a cache.

March 2001 The Delphi Magazine 53

class, the matrix is held as a TList
of TLists, with the major TList
being rows in the matrix and the
minor TLists, cells across the
columns for a particular row. To
make it even easier still (I didn’t
want to spend precious time writ-
ing the code to grow the matrix by
increasing the number of rows or
columns, for example) I made the
matrix class specific to the LCS
problem in hand: all right, I admit I
didn’t have a nice matrix class
already written! So simplicity was
the order of the day. I won’t bother
showing the matrix class here: the
code is fairly trivial and it’s on this
month’s disk anyway.

Iterative Versus Recursive
The LCS code is also fairly easy to
write. I was torn when I first coded
it: should I follow the recursive
method already outlined, or
should I follow the manual process
I just described? For fun, and for
experimentation’s sake, I wrote
both. Listing 3 shows the iterative
solution. We start off by filling the
top row and the left column of the
matrix with ‘null’ cells. These cells
all have an LCS length of zero
(remember that they describe an
LCS between an empty string and
another), and I just set the direc-
tion flag to point to the previous

cell that’s closer to (0,0). Next
comes the loop within a loop. For
every row, we calculate the LCS for
each of the cells from left to right.
We do this for all rows from top to
bottom. First test is the test to see
whether the two characters refer-
enced by the cell are equal. (A cell
in the matrix is at the junction of a
character in the from string and
one in the to string.) If they are,
then we know that the LCS length
at this cell is equal to the LCS
length from the cell adjacent at the
northwest, plus one. Notice that
the way we’re calculating the cells
means that this cell being refer-
enced has already been calculated
(that’s one reason why we ‘pre-
calculated’ the cells along the top
and left sides). If the two charac-
ters are not equal, then we have to
look at the cell to the north and the
one to the west. We select the one
that has the longest LCS length,
and use that length for this cell. If
the two lengths are equal, we could
select either one. We shall, how-
ever, make a rule that we would
preferentially choose the one to
the left. The reason for this is that,
once we have calculated a path
through the matrix to produce the
LCS of both strings, the deletions
from the first string will occur
before the insertions into the
second string.

Notice that the method shown in
Listing 3 takes a constant time for
two strings, no matter how many

similarities there are. If the two
strings have length n and m, the
time taken in the main loop will be
proportional to n*m, since that’s
the number of cells you will have to
calculate (the cell for which you
really want the answer is the last
one to be calculated).

As I said, I wrote this method in
preference to the recursive one
and played around with it for a
while. One of the examples I chose
was converting illiteracy to
innumeracy. This pair of words has
an LCS of 6: i, e, r, a, c, y. When you
plot the matrix (see Table 2) you
can see that the end of the LCS
path is diagonal. (Table 2 shows
characters that show the direction
to follow for each cell: remember
that you should take a pen, start at
the bottom right hand cell and
move to the top left one, following
the |, \, or - directions. Once
you’ve traced the path, you can
follow it back to describe the
changes that need to be made to
convert the first string into the
second. If you go down, you delete
a character. If you move right, you

F I N I S H
0 0 0 0 0 0 0

B 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0
I 0 0 1 1 1 1 1
N 0 0 1 2 2 2 2

➤ Table 1: Calculating the LCS
matrix for BEGIN/FINISH.

procedure TaaStringLCS.slFillMatrix;
var
FromInx : integer;
ToInx : integer;
FromCh : PAnsiChar;
ToCh : PAnsiChar;
NorthLen: integer;
WestLen : integer;
LCSData : PaaLCSData;

begin
{Create the empty items along the top and left sides}
for ToInx := 0 to length(FToStr) do begin
New(LCSData);
LCSData.ldLen := 0;
LCSData.ldPrev := ldWest;
FMatrix[0, ToInx] := LCSData;

end;
for FromInx := 1 to length(FFromStr) do begin
New(LCSData);
LCSData.ldLen := 0;
LCSData.ldPrev := ldNorth;
FMatrix[FromInx, 0] := LCSData;

end;
{fill in the matrix, row by row, from left to right}
FromCh := PAnsiChar(FFromStr);
for FromInx := 1 to length(FFromStr) do begin
ToCh := PAnsiChar(FToStr);
for ToInx := 1 to length(FToStr) do begin
{create the new item}
New(LCSData);
{if the two current chars are equal, increment the
count from the northwest, that's our previous item}

if (FromCh^ = ToCh^) then begin

LCSData^.ldPrev := ldNorthWest;
LCSData^.ldLen :=
succ(FMatrix[FromInx-1, ToInx-1]^.ldLen);

end
{ otherwise the current characters are different:
use the maximum of the north or west (west is
preferred)}

else {current chars are different} begin
NorthLen := FMatrix[FromInx-1, ToInx]^.ldLen;
WestLen := FMatrix[FromInx, ToInx-1]^.ldLen;
if (NorthLen > WestLen) then begin
LCSData^.ldPrev := ldNorth;
LCSData^.ldLen := NorthLen;

end
else begin
LCSData^.ldPrev := ldWest;
LCSData^.ldLen := WestLen;

end;
end;
{set the item in the matrix}
FMatrix[FromInx, ToInx] := LCSData;
{move one char on in the to string}
inc(ToCh);

end;
{move one char on in the from string}
inc(FromCh);

end;
{at this point the item in the bottom right hand corner
has the length of the LCS and the calculation is
complete}

end;

➤ Listing 3: Calculating the
LCD matrix for a pair of
strings via iteration.

54 The Delphi Magazine Issue 67

insert one. A diagonal indicates no
change.) The parts of the matrix
above that diagonal and to its left
do not need to be calculated: they
can play no part in the final LCS.
That got me thinking about the
recursive method again, and so I
wrote it.

Listing 4 shows this recursive
method. It’s coded as a function
that returns the LCS length for a
particular cell, given by its row and
column index (which are after all
indexes into the from string and
the to string). First big difference:
we don’t have to generate the ‘null’
cells along the top and down the
left side, that’s now taken care of
with a simple if statement. (To be
fair, we could get away without cal-
culating them in the iterative case,
but the inner code in the loop
would become more complicated
to understand and maintain, and
so, in the interest of simplicity, we
pre-calculated those cells.) If the
cell has already been calculated,
we simply return its LCS length. If
not, we do the same checking as
before: are the two characters
equal? Yes, add one to the LCS
length from the cell at the north-
west. No, use the larger LCS length
value from the cells at the north or
at the west. These LCS values are of
course calculated from recursive
calls to this routine.

Using this recursive version, I
generated the matrix for illiteracy
to innumeracy. My thoughts were
confirmed: Table 3 shows that
many of the cells are simply not

calculated; these are the ones with
a question mark. (Please note that
it’s not just a question of calcula-
tion, it’s also the fact that we have
to allocate a cell off the heap.
Saving both calculation and alloca-
tion time is not to be sneezed at,
but admittedly in these simple
examples, it’s not that important.
It’ll be more significant later on
when we deal with text files again.)

Generating The Edit Sequence
Great, so now we have a matrix that
defines the longest common
subsequence. How can we use it? I
decided to write a routine that cre-
ated a text file that described the
changes. This would make it easier
for us to write the equivalent for
the file case: the ultimate aim of
this article. Also, by doing it this
way, we won’t get embroiled in
bizarre formats or different needs.
Instead we shall see a simple

traversal technique, shorn of
complexity, which we can bend to
our own desires. Listing 5 shows
this code. It comprises two meth-
ods: the first that gets called by the
user with a file name, and the
second a recursive routine that
writes the data to the file. All the
action is in this second routine.
Since the matrix encodes the LCS
path backwards (in other words
you have to start at the finish, work
your way back to the start to dis-
cover the path that you can then
follow forwards) we write the
method to call itself recursively
first and then write out the data for
the current position. For a recur-
sive routine we have to make sure
it terminates (my first coding
attempt at this didn’t!), and this is
taken to be the case where the

i n n u m e r a c y
- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0

i | 0 \ 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
l | 0 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
l | 0 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
i | 0 \ 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
t | 0 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
e | 0 | 1 - 1 - 1 - 1 - 1 \ 2 - 2 - 2 - 2 - 2
r | 0 | 1 - 1 - 1 - 1 - 1 | 2 \ 3 - 3 - 3 - 3
a | 0 | 1 - 1 - 1 - 1 - 1 | 2 | 3 \ 4 - 4 - 4
c | 0 | 1 - 1 - 1 - 1 - 1 | 2 | 3 | 4 \ 5 - 5
y | 0 | 1 - 1 - 1 - 1 - 1 | 2 | 3 | 4 | 5 \ 6

➤ Table 2: The full LCS matrix
for illiteracy/innumeracy.

function TaaStringLCS.slGetCell(aFromInx, aToInx :
integer) : integer;

var
LCSData : PaaLCSData;
NorthLen: integer;
WestLen : integer;

begin
if (aFromInx = 0) or (aToInx = 0) then
Result := 0

else begin
LCSData := FMatrix[aFromInx, aToInx];
if (LCSData <> nil) then
Result := LCSData^.ldLen

else begin
{create the new item}
New(LCSData);
{if the two current chars are equal, increment the
count from the northwest, that's our previous item}

if (FFromStr[aFromInx] = FToStr[aToInx]) then begin
LCSData^.ldPrev := ldNorthWest;
LCSData^.ldLen :=
slGetCell(aFromInx-1, aToInx-1) + 1;

end
{otherwise the current characters are different: use
the maximum of the north or west (west preferred)}

else begin
NorthLen := slGetCell(aFromInx-1, aToInx);
WestLen := slGetCell(aFromInx, aToInx-1);
if (NorthLen > WestLen) then begin
LCSData^.ldPrev := ldNorth;
LCSData^.ldLen := NorthLen;

end
else begin
LCSData^.ldPrev := ldWest;
LCSData^.ldLen := WestLen;

end;
end;
{set the item in the matrix}
FMatrix[aFromInx, aToInx] := LCSData;
{return the length of this LCS}
Result := LCSData^.ldLen;

end;
end;

end;

➤ Listing 4: Calculating the
LCD matrix for a pair of
strings via recursion.

i n n u m e r a c y
? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0

i ? 0 \ 1 - 1 - 1 - 1 - 1 ? 0 ? 0 ? 0 ? 0 ? 0
l ? 0 | 1 - 1 - 1 - 1 - 1 ? 0 ? 0 ? 0 ? 0 ? 0
l ? 0 | 1 - 1 - 1 - 1 - 1 ? 0 ? 0 ? 0 ? 0 ? 0
i ? 0 \ 1 - 1 - 1 - 1 - 1 ? 0 ? 0 ? 0 ? 0 ? 0
t ? 0 | 1 - 1 - 1 - 1 - 1 ? 0 ? 0 ? 0 ? 0 ? 0
e ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 \ 2 ? 0 ? 0 ? 0 ? 0
r ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 \ 3 ? 0 ? 0 ? 0
a ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 \ 4 ? 0 ? 0
c ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 \ 5 ? 0
y ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 ? 0 \ 6

➤ Table 3: The partial LCS matrix for illiteracy/innumeracy.

56 The Delphi Magazine Issue 67

procedure TaaStringLCS.slWriteChange(var F : System.Text;
aFromInx, aToInx : integer);

var
Cell : PaaLCSData;

begin
{if both indexes are zero, this is the first
cell of the LCS matrix, so just exit}
if (aFromInx = 0) and (aToInx = 0) then
Exit;

{if the from index is zero, we're flush against the left
hand side of the matrix, so go up; this'll be a deletion}
if (aFromInx = 0) then begin
slWriteChange(F, aFromInx, aToInx-1);
writeln(F, '-> ', FToStr[aToInx]);

end
{if the to index is zero, we're flush against the top side
of the matrix, so go left; this'll be an insertion}
else if (aToInx = 0) then begin
slWriteChange(F, aFromInx-1, aToInx);
writeln(F, '<- ', FFromStr[aFromInx]);

end
{otherwise see what the cell says to do}
else begin
Cell := FMatrix[aFromInx, aToInx];
case Cell^.ldPrev of
ldNorth :
begin
slWriteChange(F, aFromInx-1, aToInx);

writeln(F, '<- ', FFromStr[aFromInx]);
end;

ldNorthWest :
begin
slWriteChange(F, aFromInx-1, aToInx-1);
writeln(F, ' ', FFromStr[aFromInx]);

end;
ldWest :
begin
slWriteChange(F, aFromInx, aToInx-1);
writeln(F, '-> ', FToStr[aToInx]);

end;
end;

end;
end;
procedure TaaStringLCS.WriteChanges(const aFileName :
string);

var
F : System.Text;

begin
System.Assign(F, aFileName);
System.Rewrite(F);
try
slWriteChange(F, length(FFromStr), length(FToStr));

finally
System.Close(F);

end;
end;

➤ Above, Listing 5: Writing out the changes to convert one string to another.

constructor TaaFileLCS.Create(const aFromFile, aToFile :
string);

begin
{create the ancestor}
inherited Create;
{read the files}
FFromFile := TStringList.Create;
FFromFile.LoadFromFile(aFromFile);
FToFile := TStringList.Create;
FToFile.LoadFromFile(aToFile);
{create the matrix}
FMatrix := TaaLCSMatrix.Create(FFromFile.Count,
FToFile.Count);

{now fill in the matrix}
slGetCell(pred(FFromFile.Count), pred(FToFile.Count));

end;
destructor TaaFileLCS.Destroy;
begin
{destroy the matrix}
FMatrix.Free;
{free the string lists}
FFromFile.Free;
FToFile.Free;
{destroy the ancestor}
inherited Destroy;

end;
function TaaFileLCS.slGetCell(aFromInx, aToInx : integer) :
integer;

var
LCSData : PaaLCSData;
NorthLen: integer;
WestLen : integer;

begin
if (aFromInx = -1) or (aToInx = -1) then
Result := 0

else begin
LCSData := FMatrix[aFromInx, aToInx];
if (LCSData <> nil) then
Result := LCSData^.ldLen

else begin
{create the new item}
New(LCSData);
{if the two current lines are equal, increment the
count from the northwest, that's our previous item}

if (FFromFile[aFromInx] = FToFile[aToInx]) then begin
LCSData^.ldPrev := ldNorthWest;
LCSData^.ldLen :=
slGetCell(aFromInx-1, aToInx-1) + 1;

end
{otherwise the current lines are different: use the
maximum of the north or west (west preferred)}

else begin
NorthLen := slGetCell(aFromInx-1, aToInx);
WestLen := slGetCell(aFromInx, aToInx-1);
if (NorthLen > WestLen) then begin
LCSData^.ldPrev := ldNorth;
LCSData^.ldLen := NorthLen;

end
else begin
LCSData^.ldPrev := ldWest;
LCSData^.ldLen := WestLen;

end;
end;
{set the item in the matrix}
FMatrix[aFromInx, aToInx] := LCSData;

{return the length of this LCS}
Result := LCSData^.ldLen;

end;
end;

end;
procedure TaaFileLCS.slWriteChange(var F : System.Text;
aFromInx, aToInx : integer);

var
Cell : PaaLCSData;

begin
{if both indexes are less than zero, this is the first
cell of the LCS matrix, so just exit}

if (aFromInx = -1) and (aToInx = -1) then
Exit;

{if the from index is less than zero, we're flush against
the left hand side of the matrix, so go up; this'll be a
deletion}

if (aFromInx = -1) then begin
slWriteChange(F, aFromInx, aToInx-1);
writeln(F, '-> ', FToFile[aToInx]);

end
{if the to index is less than zero, we're flush against
the top side of the matrix, so go left; this'll be an
insertion}

else if (aToInx = -1) then begin
slWriteChange(F, aFromInx-1, aToInx);
writeln(F, '<- ', FFromFile[aFromInx]);

end
{otherwise see what the cell says to do}
else begin
Cell := FMatrix[aFromInx, aToInx];
case Cell^.ldPrev of
ldNorth :
begin
slWriteChange(F, aFromInx-1, aToInx);
writeln(F, '<- ', FFromFile[aFromInx]);

end;
ldNorthWest :
begin
slWriteChange(F, aFromInx-1, aToInx-1);
writeln(F, ' ', FFromFile[aFromInx]);

end;
ldWest :
begin
slWriteChange(F, aFromInx, aToInx-1);
writeln(F, '-> ', FToFile[aToInx]);

end;
end;

end;
end;
procedure TaaFileLCS.WriteChanges(const aFileName : string);
var
F : System.Text;

begin
System.Assign(F, aFileName);
System.Rewrite(F);
try
slWriteChange(F, pred(FFromFile.Count),
pred(FToFile.Count));

finally
System.Close(F);

end;
end;

➤ Below, Listing 6: The class for calculating the LCS for two files.

March 2001 The Delphi Magazine 57

routine is called for cell (0,0); don’t
write anything to the file for this
case. If the index into the to string
is zero, we make the recursive call
moving up the matrix (the index
into the from string is decre-
mented) and the action is taken to
be the deletion of the current char-
acter in the from string. If the index
into the from string is zero, we
make the recursive call moving left
through the matrix, and the action
is inserting the current character
into the to string. Finally, if both
indexes are non-zero, we find the
cell in the matrix and make the req-
uisite recursive call, and write the
action to the file. For a down move,
it’s a deletion; for a right move, it’s
an insertion; for a diagonal move,
it’s neither (the character is ‘car-
ried over’). For a deletion, we use a
right facing arrow (<-); for an inser-
tion, a left facing arrow (->); and for
a carry over, nothing.

Here is the text file that was gen-
erated for converting algorithms
into alfresco.

a
l

<- g
<- o
-> f

r
<- i
<- t
<- h
<- m
-> e

s
-> c
-> o

Pretty easy to understand at a
glance! You can see the longest
common subsequence (a, l, r, s),
and you can easily identify the
deletions and insertions.

And Text Files?
With all that under our belts, we
can now attack the text file prob-
lem. If we assume that we can use
TStringLists for both files, I’m sure
that you can see that much of the
code is really similar. Obviously
we’re now comparing whole text
lines (strings) at a time, instead of
characters, but the main algorithm
remains the same and so it

becomes a matter of cut and paste.
There is one major gotcha, though:
with strings we start counting the
characters at 1, with a stringlist we
start counting the strings (the lines
in the original file) at zero. We must
therefore make some changes.

The first change is that I didn’t
code the iterative method for cal-
culating the LCS. If you recall, the
iterative method required the
‘zero’ cells to be pre-calculated.
That’s fine for a couple of strings
where characters are counted
from one, but makes a whole mess
when we’re talking about
stringlists when the ‘zero’ cells
presumably become the ‘minus
one’ cells. That means changes to
the matrix class as well as every-
thing else. Brrr, no thanks. So I only
coded the recursive method.

The next change is that the top
and left sides of the matrix are now
‘virtual’, since they use index -1.
That’s no problem for the recur-
sive code; they’re always assumed
to not exist.

Listing 6 shows the new class
that generates the LCS for a pair of
files.

This is the point where we stop
with this month’s article. We’ve
shown how to generate the longest

common subsequence for a pair of
files, and, even better, shown how
to edit one file to produce the
other. There are lots of possibili-
ties and questions left for the
adventurous reader, however.
What if the files are very large? Is
there a better structure for analyz-
ing them than just loading them
both into string lists? I’ve used a
recursive method here, what are
the ramifications regarding the
stack? For large files, would there
be too much recursion, blowing
the stack? I’ve used a simple com-
parison test between lines in the
files, what other more complex
tests could we do? Stripping trail-
ing spaces is one example. How
could we create a ‘patch’ to go
from one file to another?

Anyway, I hope you’ve enjoyed
this article as much as I have. I’ve
learnt a lot myself this time, I hope
it was the same for you.

Julian Bucknall can be reached
at julianb@turbopower.com The
code that accompanies this article
is freeware and can be used as-is
in your own applications.

© Julian M Bucknall, 2001

	Initial Thoughts
	Strings Are Easier
	Longest Common Subsequence
	Aside On Fibonacci
	Calculating The LCS
	Iterative Versus Recursive
	Generating The Edit Sequence
	And Text Files?

